Acknowledgements

1 Introduction
 1.1 Health and safety considerations

2 The corrosion of steel
 2.1 Corrosion: the basic process
 2.2 The electrochemical nature of corrosion
 2.3 Corrosion terminology
 2.3.1 Potential
 2.3.2 Polarisation
 2.3.3 Passivity
 2.4 Corrosion in air
 2.4.1 Steel composition
 2.4.2 Rust
 2.5 Corrosion in water
 2.5.1 Composition of water
 2.5.2 Operating conditions
 2.5.3 Steel composition
 2.5.4 Corrosion rates of steel in water
 2.6 Corrosion in soil
 2.7 Bacterial corrosion
 2.8 Health and safety considerations
 References
 Further reading

3 Surface preparation
 3.1 Steel surface contaminants and conditions
 3.1.1 Oil and grease
3.1.2 Millscale
3.1.3 Surface cleanliness
3.1.4 Roughness
3.1.5 Surface defects and welds

3.2 Surface preparation methods
3.2.1 Degreasing
3.2.2 Hand- and power-tool cleaning
3.2.3 Abrasive blast-cleaning
3.2.4 Innovative methods
3.2.5 Flame cleaning
3.2.6 Pickling
3.2.7 Iron and zinc phosphating

3.3 Health and safety matters
3.3.1 General
3.3.2 Open nozzle blast-cleaning
3.3.3 Pressure water jetting
3.3.4 Flame cleaning

References

4 Paints and paint coatings
4.1 General requirements
4.2 The nature of paint
4.2.1 Paint systems
4.3 Protection by paint films
4.3.1 Zinc-rich pigments
4.3.2 Inhibitive pigments
4.3.3 Barrier coatings
4.4 Properties of paint films
4.4.1 Adhesion
4.4.2 Flexibility
4.4.3 Hardness
4.4.4 Abrasion resistance
4.4.5 Permeability
4.4.6 Resistance to microorganisms
4.4.7 Ageing of paint films
4.5 Paint film formation
4.6 Binders
4.6.1 Oxidation type
4.6.2 Solvent evaporation type
4.6.3 Chemically reacting type
5.5.2 Paint materials

References

6 Specialist coatings and applications

6.1 Coating or lining of tanks
 6.1.1 Corrosion protection
 6.1.2 Lining materials
 6.1.3 Application of linings

6.2 Powder coatings
 6.2.1 Application methods

6.3 Coil coatings

6.4 Wrapping tapes

6.5 Fire protection

6.6 Pipelines
 6.6.1 Subsea pipelines
 6.6.2 Buried pipelines

References

7 Metal coatings

7.1 Application methods
 7.1.1 Hot-dipping
 7.1.2 Sprayed coatings
 7.1.3 Coatings produced by diffusion
 7.1.4 Electrodeposited coatings
 7.1.5 Other application methods

7.2 Corrosion mechanism of metallic coatings

7.3 Painting of metallic coatings

7.4 Performance of metallic coatings
 7.4.1 Performance of zinc coatings
 7.4.2 Performance of aluminium coatings
 7.4.3 Performance of cadmium coatings

7.5 Comparison between metallic and paint coatings

7.6 Choice of type of metallic coating

7.7 Treatment of welded areas

7.8 Wet storage stain

7.9 Fasteners

7.10 Health and safety matters
 7.10.1 Hot-dip galvanising
 7.10.2 Metal spraying

References

© 2002 D. A. Bayliss and D. H. Deacon
8 Writing effective specifications
 8.1 Scope of the specification
 8.1.1 Scope
 8.1.2 Documents
 8.1.3 Pre-job conference
 8.1.4 Surface preparation
 8.1.5 Materials
 8.1.6 Control of coating materials and samples
 8.1.7 Coating application
 8.1.8 Workmanship
 8.1.9 Treatments of special areas
 8.1.10 Handling, transport and storage
 8.1.11 Remedial work
 8.1.12 Inspection and quality control
 8.1.13 Safety
 8.1.14 Other aspects of specifications
 8.2 International standards

9 Quality control of coating operations
 9.1 Introduction
 9.2 Inspection requirements
 9.3 The approach to quality control
 9.4 Requirements for an inspector
 9.4.1 Training and certification of inspectors
 9.5 Methods of inspection of paint coatings
 9.5.1 Surface preparation
 9.5.2 Testing of liquid paints
 9.5.3 Coating application
 9.6 Inspection of metal coatings
 9.6.1 Hot-dip galvanising
 9.6.2 Sprayed metal coatings
 9.7 Inspection instruments
 9.8 Reports and records
 9.9 Health and safety matters
 References

10 Designing for corrosion control
 10.1 Environmental conditions
 10.2 Materials
 10.3 Bimetallic corrosion

© 2002 D. A. Bayliss and D. H. Deacon
10.4 Access for inspection and maintenance
10.5 Crevices
10.6 Ground-level corrosion
10.7 Entrapment of moisture and condensation
10.8 Geometry and shape
10.9 Tanks
10.10 Fabrication and construction
10.11 Corrosion of steel in contact with other materials

Further reading

11 Maintenance painting
11.1 Introduction
11.2 The general approach to maintenance painting
11.3 Planning maintenance
11.4 Inspections and surveys for maintenance
 11.4.1 Survey procedures
 11.4.2 Feasibility trials
11.5 Maintenance procedures
 11.5.1 Surface preparation prior to repainting
 11.5.2 Painting
11.6 Environmental conditions during repainting
11.7 Health and safety matters
References

12 Control methods other than coatings
12.1 Cathodic protection
 12.1.1 Basic principles
 12.1.2 The application of cathodic protection
 12.1.3 Sacrificial anode method
 12.1.4 Impressed current method
 12.1.5 Choice of method for cathodic protection
 12.1.6 Practical applications of cathodic protection
 12.1.7 Coatings and cathodic protection
12.2 Conditioning of the environment
 12.2.1 Treatment of the air
 12.2.2 Treatment of aqueous solutions
12.3 Alloy steels
 12.3.1 Stainless steels
 12.3.2 Low-alloy weathering steels
References
13 Coating defects and failures
 13.1 Introduction
 13.2 Surface preparation
 13.3 Coating materials
 13.4 Coating application
 13.5 Transport and storage
 13.6 Types of coating defects
 13.6.1 Adhesion loss (flaking, peeling, etc.)
 13.6.2 Bacterial or fungal attack
 13.6.3 Bleeding
 13.6.4 Blistering
 13.6.5 Blooming or blushing
 13.6.6 Chalking
 13.6.7 Cissing, crawling and fisheyeing
 13.6.8 Cobwebbing
 13.6.9 Cracking
 13.6.10 Complete or partial failure to cure of two-part materials
 13.6.11 Dry spray
 13.6.12 Fading
 13.6.13 Lifting or pulling up
 13.6.14 Orange peel
 13.6.15 Pinholes and holidays
 13.6.16 Pinpoint rusting
 13.6.17 Runs and sags
 13.6.18 Saponification
 13.6.19 Skin curing
 13.6.20 Spot-blast boundary breakdown
 13.6.21 Thickness faults
 13.6.22 Uneven gloss
 13.6.23 Undercutting
 13.6.24 Wrinkling
 References

14 The selection of coating systems
 14.1 Introduction
 14.2 Factors influencing the selection of coating systems
 14.3 Selection of coatings for specific environments
 14.4 Types of coatings
 14.5 Costs of protective systems

© 2002 D. A. Bayliss and D. H. Deacon
14.5.1 Calculating the costs of alternative protective systems
14.5.2 Initial costs of protective systems

Further reading

15 Protective systems for different situations
15.1 General steelwork exposed to the atmosphere
15.1.1 Bridges
15.1.2 Buildings
15.1.3 Storage tanks (exterior)
15.2 Offshore structures
15.2.1 Atmospheric zone
15.2.2 Immersed zone
15.2.3 Splash zone
15.3 Ships
15.3.1 Surface preparation
15.3.2 Areas to be protected
15.3.3 Underwater plating
15.3.4 Anti-fouling paints
15.3.5 Boot topping
15.3.6 Topsides and superstructures
15.3.7 Steel decks
15.3.8 Machinery, pipes, etc.
15.3.9 Cargo and ballast tanks
15.3.10 Freshwater tanks
15.4 Chemical plants
15.5 Oil refineries and installations
15.6 Sewage systems
15.7 Sheet piling
15.8 Jetties and harbours
15.9 Steel in reinforced concrete
15.9.1 Concrete
15.9.2 The corrosion of rebar in concrete
15.9.3 Types of failure with reinforced concrete
15.9.4 Corrosion control methods

References

16 Testing of coatings
16.1 Introduction
16.2 Test requirements

© 2002 D. A. Bayliss and D. H. Deacon
16.3 Laboratory testing of paint films
 16.3.1 Determination of drying time
 16.3.2 Gloss
 16.3.3 Hiding power
 16.3.4 Adhesion tests
 16.3.5 Abrasion resistance
 16.3.6 Physical state of the film
 16.3.7 Film thickness
16.4 Testing of paints
16.5 Laboratory performance tests
 16.5.1 Artificial weathering
 16.5.2 Salt-spray tests
 16.5.3 Humidity and condensation tests
 16.5.4 Other laboratory tests
16.6 Instruments for specialised analysis
16.7 Field tests
 16.7.1 Type of specimen to be used for the tests
 16.7.2 The coating
 16.7.3 Exposure of specimens
 16.7.4 Test sites
 16.7.5 Monitoring of test sites
 16.7.6 Methods of measuring atmospheric pollution
 16.7.7 Conduct of field tests
16.8 Service trials
16.9 Tests in water and soil
16.10 Formulating the test programme
16.11 Reporting the results of tests
References
The original version and first edition of this book, published in 1985 and 1991 respectively, were largely the inspiration and work of the late Ken Chandler. Ken’s objective was never to provide a comprehensive text book on coating technology but, instead, an easy to read reference for engineers, architects and others, for whom the protection of steelwork is an important, although often a comparatively minor, part of their total professional activities.

Nowadays, not only are new materials and methods being developed constantly but the increased emphasis and legislation on health, safety and environmental issues have made even more radical changes necessary in paint materials, surface preparation and paint application. It has become even more difficult for the non-specialist to keep abreast of the situation.

The sudden death of Ken Chandler in 1995 was not only a personal loss of a friend and colleague, but deprived the Industry of somebody of great integrity and very long and valuable experience. When requested to produce this new edition I was able to persuade David Deacon, somebody with similar long experience, to become co-author, this despite the many other calls on his time. Fortunately we were both able to gain the services of yet another colleague, namely Garth Cox, whose experience as a senior paint chemist for both major paint manufacturers and raw material suppliers, has been of invaluable help.

I also take this opportunity to acknowledge the work of colleagues in this field. They are too numerous to mention, but many of the views expressed in this book have arisen from discussions with them and the study of their contributions to journals and conferences over many years.

Derek Bayliss
Woodbridge, Suffolk
October 2001